光源分类?光源可分为哪几类


本文目录


分类
照明光源
照明光源是以照明为目的,辐射出主要为人眼视觉的可见光谱(波长380~780纳米)的电光源,其规格品种繁多,功率从0.1瓦到20千瓦,产量占电光源总产量的95%以上。 照明光源品种很多,按发光形式分为热辐射光源、气体放电光源和电致发光光源3类。 ①热辐射光源。电流流经导电物体,使之在高温下辐射光能的光源。包括白炽灯和卤钨灯两种。 ②气体放电光源。电流流经气体或金属蒸气,使之产生气体放电而发光的光源。气体放电有弧光放电和辉光放电两种,放电电压有低气压、高气压和超高气压3种。弧光放电光源包括:荧光灯、低压钠灯等低气压气体放电灯,高压汞灯、高压钠灯、金属卤化物灯等高强度气体放电灯,超高压汞灯等超高压气体放电灯,以及碳弧灯、氙灯、某些光谱光源等放电气压跨度较大的气体放电灯。辉光放电光源包括利用负辉区辉光放电的辉光指示光源和利用正柱区辉光放电的霓虹灯,二者均为低气压放电灯;此外还包括某些光谱光源。 ③电致发光光源。在电场作用下,使固体物质发光的光源。它将电能直接转变为光能。包括场致发光光源和发光二极管两种。
辐射光源
辐射光源是不以照明为目的,能辐射大量紫外光谱(1~380纳米)和红外光谱(780~1×106纳米)的电光源,它包括紫外光源、红外光源和非照明用的可见光源。以上两大类光源均为非相干光源。此外还有一类相干光源,它通过激发态粒子在受激辐射作用下发光,输出光波波长从短波紫外直到远红外,这种光源称为激光光源。


(一)造型光分为主光、辅助光、环境光、轮廓光、眼神光、修饰光等。
(二)(1)主光:主光又称为塑型光,是刻画人物和表现环境的主要光线。不管其方向如何,应在各种光线中占统治地位,是画面中最引人注目的光线。
主光处理的好坏直接影响到被摄对象的立体形态和轮廓特征的表现,也影响到画面的基调、光影结构和风格,是摄像师需要首先考虑的光线。
(2)辅助光:辅助光又称为副光,是用以补充主光照明的光线。辅助光一般多是无阴影的软光,用以减弱主光的生硬粗糙的阴影,减低受光面和背光面的反差,提高暗部影像的造型表现力。
通常主光和辅助光的光比决定了被摄对象的影调反差,控制和调整主光与辅助光的光比就成为十分重要的问题(光比是主光和辅助光形成的亮度比值)。
(3)环境光:环境光又叫背景光,是指专用以照明背景和环境的光线。环境光主要是通过环境光线所构成的背景光影与被摄主体形成某种映衬和对比,达到突出主体的目的。
环境光除烘托主要被摄对象外,还有表现特定环境、时间或造成某种特殊气氛和影调等作用。
(4)轮廓光:轮廓光是使被摄对象产生明亮边缘的光线。其主要任务是勾画和突出被摄对象富有表现力的轮廓形式。由于轮廓光是从被摄对象背后或侧后方向照射过来的,因此具有逆光的光线效果。
轮廓光具有较强的装饰性和美化效果,但这种美化表现手段不宜滥用,特别是在纪实性影片和节目中更应慎用,否则会给人以虚假的感觉。
(5)眼神光:眼神光是使主体人物眼球上产生光斑的光线。它能使人物目光炯炯有神、明亮而又活跃。眼神光主要在人物的近景和特写景别中才有明显的效果,而在大景别画面中难以引人注意。此外,当人物来回走动或频繁转头时也难达到预期效果。在纪实性节目中使用眼神光会使人感到画面中人为的修饰性。
(6)修饰光:修饰光是指用以修饰被摄对象某一细部的光线。当主光、辅助光和照度等确定之后,在被摄对象布光仍不理想的地方,用适当光线予以修饰。例如:提高人物服饰某个部位的亮度;打亮人物身上某个装饰物(勋章、耳环、项链等);修饰主光与辅助光之间的过渡影调等等。修饰光可以使被摄对象整体形象更加悦目,局部形象更显特点,更富有造型表现力,运用修饰光应注意不显露人工痕迹,不破坏整体效果。最好用亮度便于控制,照明范围较小的照明灯具。


光源可以分为自然光源(天然光源)和人造光源。太阳、萤火虫、打开的电灯、燃烧着的蜡烛等都是光源。
人造光源是随着人类的文明、科学技术的发展而逐渐制造出来的光源。按先后出现顺序,分别有:火把、油灯、蜡烛、电灯(包括白炽灯、日光灯、高压氙灯)等。
物理学上指能发出一定波长范围的电磁波(包括可见光与紫外线、红外线和X光线等不可见光)的物体。通常指能发出可见光的发光体。凡物体自身能发光者,称做光源,又称发光体,如太阳、恒星、灯以及燃烧着的物质等都是。但像月亮表面、桌面等依靠它们反射外来光才能使人们看到它们,这样的反射物体不能称为光源。在我们的日常生活中离不开可见光的光源,可见光以及不可见光的光源还被广泛地应用到工农业,医学和国防现代化等方面。


光源可以分为三种。
第一种是热效应产生的光,太阳光就是很好的例子,此外蜡烛等物品也都一样,此类光随着温度的变化会改变颜色。
第二种是原子发光,荧光灯灯管内壁涂抹的荧光物质被电磁波能量激发而产生光,此外霓虹灯的原理也是一样。原子发光具有独自的基本色彩,所以彩色拍摄时我们需要进行相应的补正。
第三种是synchrotron发光,同时携带有强大的能量,原子炉发的光就是这种,但是我们在日常生活中几乎没有接触到这种光的机会,所以记住前两种就足够了。
光是电磁波,可见光是波长为400-700纳米的电磁波。小于400纳米的电磁波为紫外线,如X-射线;大于700纳米的电磁波为红外线,如微波、广播无线电波。波长单位为纳米,
什么是光
我们一直在争论“光”是属于波还是粒子,甚至以古典力学闻名世界的牛顿也讨论过这个问题。物理学此后发展到了量子论(1900年)、量子力学,然后爱因斯坦于1904年发表了相対论,对光的定义做出了全新的解释:光既是一种波,同时又是一种粒子。也就是说,一直争论不休的双方都没有错。
光是电磁波的一种,也是能源的一种表现形式。它在真空中的传播速度达到每秒钟30万公里,没有任何物质的速度会超过光——也有人说尚不能绝对的这样说。黑白摄影时,我们通常使用红色或绿色的滤镜,它的原理是用滤镜吸收与它自身颜色不同的光线,并把吸收的光能转换为热能释放出来。使用滤镜时常常感到它在发热就是因为这个道理。对于电磁波,人类的眼睛可以识别的称为可视光,就是平常我们称作的“光”。光本身是看不到的,我们只有注视光源和依靠反射物才能够感觉它。有些昆虫使用紫外线识别对象,蝮蛇则通过红外线识别,而狗、牛、猫和马都不能识别色彩。
光的种类
光源可以分为三种。
第一种是热效应产生的光,太阳光就是很好的例子,此外蜡烛等物品也都一样,此类光随着温度的变化会改变颜色。
第二种是原子发光,荧光灯灯管内壁涂抹的荧光物质被电磁波能量激发而产生光,此外霓虹灯的原理也是一样。原子发光具有独自的基本色彩,所以彩色拍摄时我们需要进行相应的补正。
第三种是synchrotron发光,同时携带有强大的能量,原子炉发的光就是这种,但是我们在日常生活中几乎没有接触到这种光的机会,所以记住前两种就足够了。
光的印象
光是直线前进的,碰到东西时它会反射,如果是透明物体还会透过去,根据物质的密度还会有曲折现象发生——这就是镜头的原理。另外,光在遇到半透过物质(比如柔光板)是还有散射现象,就是失去了平行性,往任何一个方向散射开,我们看到的结果是光在传播过程中强度减小了。反过来,如果光一直保持不散开的状态就可以传播的很远。我们知道激光就有这样的特性,而身边最常见的例子是探照灯,我们会在后面讲到。具体拍摄时所使用的有散光、直射光或者两者的混合光,知道这些区别,拍摄写真会有很大的帮助。
直射光和反射光
散光是指散乱的光线,想想一下午后透过窗帘传播到室内的阳光,就会有个大致的印象。散光分为两种,一种是由透过光形成,另一种由反射光形成的(实际拍摄中,我们利用柔光板得到散光,反射光则是由反光板反光而来的)。
如果让太阳光透过柔光板,光线被柔光纸作用散射向四处。这时处在附近的被拍摄体暗部光线被加强,同时高光部的光线被减弱,拍摄出来的照片就会显得非常柔和。此时主光源就是柔光板——正确的说应该是柔光板被阳光照射的部分。如果这时整个柔光板是边长为10米的正方形,而被光照射的部分是1平方米的正方形,那么主光源的大小应该是这边长为1米的范围。
当模特接近柔光板时,主光源相对变大,散光效果会较先前更加明亮。此外,使用白纸和白布的效果也是一样。散光,就是把光线的平行性打乱的方法,因此散光的环境下很难出现明显得阴影部分,阴影的轮廓线将很模糊,甚至看不到。而希望得到清晰的阴影边线是,通常是使用直射光。
下面来讨论一下直射光,可以想象一下太阳光直接照射到人物脸部时候的情形。与四周的反射光相比较,此时的太阳光非常强烈,明暗的差别也相当大,给人的印象是分明、极富对比性。我们从复数的物体阴影开始,向造成阴影的物体的相对点画直线,直线延长后会相交于一处,光源就存在于交叉点上,交叉点的数目和光源的数目应该是等同。太阳和月亮的光是平行的(我们几乎无法用物理手段证明它不是平行),所以不会产生交点。这一现象可以用几何学得到证明。
对比度
对比度是指明暗的差异,简单说就是高光部和阴影部之间的光量差。我们说的对比度强烈,所指的就是高光部和阴影部之间的光量差很大;对比度小,则刚刚相反。
如此可以得知,用散光拍摄的照片,在其他条件相同的情况之下,对比度应该相对的低一些——给人的印象是光线非常光滑、柔软,烘托出一种华贵的氛围。但是这种照片由于对比度不够,可能会显得层次不够分明。另一方面,光亮差小的好处是有助于彩色胶片再现各种颜色。
和散光相反,直射光下拍摄的图像给人以鲜明的感觉,如果明暗的比例适中,还可以起到强调被拍摄物立体感的作用。同时照片中影像的边缘看起来比较分明。这种光线很难正确显示被拍摄物的色彩。
散光比较适合日本画,尤其是那些强调表现微妙的色彩差异、情绪性、主观性的画面。直射光适合于西方绘画,或者是希望给人客观性印象的时候。在印刷方面,直射光适合于黑白,散光适合于彩色方面。我们会在以后继续加以介绍。
望远镜头和散光的组合,比较适合于日本画以及装饰性的拍摄;直射光和望远镜头的组合适合于表现强有力的影像——比如运动场面。广角镜头加直射光的组合非常具有客观性,给人以西方的印象;散光和广角镜头的组合位于中间,最是难以控制。东洋绘画技法中本来就没有光和阴影的概念。
有时遇到物理性的名词可以去查查现代汉语词典的,如果说根本不知道的话也是可以先去看看文字上的解释.(参见《现代汉语词典》修订本第468页)
光:通常指照在物体上,使人能看见物体的那种物质,如太阳光,灯光,月光等.可见光是波长0.77-0.39微米的电磁波.此外还包括看不见的红外光和紫外光.因为光是电磁波的一种,所以也叫光波;在一般情况下光沿着直线传播,所以也叫光线.
光的知识
狭义来说,光学是关于光和视见的科学,optics(光学)这个词,早期只用于跟眼睛和视见相联系的事物。而今天,常说的光学是广义的,是研究从微波、红外线、可见光、紫外线直到 X射线的宽广波段范围内的,关于电磁辐射的发生、传播、接收和显示,以及跟物质相互作用的科学。
光学的发展简史
光学是一门有悠久历史的学科,它的发展史可追溯到2000多年前。
人类对光的研究,最初主要是试图回答“人怎么能看见周围的物体?”之类问题。约在公元前400多年(先秦的代),中国的《墨经》中记录了世界上最早的光学知识。它有八条关光学的记载,叙述影的定义和生成,光的直线传播性和针孔成像,并且以严谨的文字讨论了在平面镜、凹球面镜和凸球面镜中物和像的关系。
自《墨经)开始,公元11世纪阿拉伯人伊本?海赛木发明透镜;公元1590年到17世纪初,詹森和李普希同时独立地发明显微镜;一直到17世纪上半叶,才由斯涅耳和笛卡儿将光的反射和折射的观察结果,归结为今天大家所惯用的反射定律和折射定律。
1665年,牛顿进行太阳光的实验,它把太阳光分解成简单的组成部分,这些成分形成一个颜色按一定顺序排列的光分布——光谱。它使人们第一次接触到光的客观的和定量的特征,各单色光在空间上的分离是由光的本性决定的。
牛顿还发现了把曲率半径很大的凸透镜放在光学平玻璃板上,当用白光照射时,则见透镜与玻璃平板接触处出现一组彩色的同心环状条纹;当用某一单色光照射时,则出现一组明暗相间的同心环条纹,后人把这种现象称牛顿环。借助这种现象可以用第一暗环的空气隙的厚度来定量地表征相应的单色光。
牛顿在发现这些重要现象的同时,根据光的直线传播性,认为光是一种微粒流。微粒从光源飞出来,在均匀媒质内遵从力学定律作等速直线运动。牛顿用这种观点对折射和反射现象作了解释。
惠更斯是光的微粒说的反对者,他创立了光的波动说。提出“光同声一样,是以球形波面传播的”。并且指出光振动所达到的每一点,都可视为次波的振动中心、次波的包络面为传播波的波阵面(波前)。在整个18世纪中,光的微粒流理论和光的波动理论都被粗略地提了出来,但都不很完整。
19世纪初,波动光学初步形成,其中托马斯?杨圆满地解释了“薄膜颜色”和双狭缝干涉现象。菲涅耳于1818年以杨氏干涉原理补充了惠更斯原理,由此形成了今天为人们所熟知的惠更斯-菲涅耳原理,用它可圆满地解释光的干涉和衍射现象,也能解释光的直线传播。
在进一步的研究中,观察到了光的偏振和偏振光的干涉。为了解释这些现象,菲涅耳假定光是一种在连续媒质(以太)中传播的横波。为说明光在各不同媒质中的不同速度,又必须假定以太的特性在不同的物质中是不同的;在各向异性媒质中还需要有更复杂的假设。此外,还必须给以太以更特殊的性质才能解释光不是纵波。如此性质的以太是难以想象的。
1846年,法拉第发现了光的振动面在磁场中发生旋转;1856年,韦伯发现光在真空中的速度等于电流强度的电磁单位与静电单位的比值。他们的发现表明光学现象与磁学、电学现象间有一定的内在关系。
1860年前后,麦克斯韦的指出,电场和磁场的改变,不能局限于空间的某一部分,而是以等于电流的电磁单位与静电单位的比值的速度传播着,光就是这样一种电磁现象。这个结论在1888年为赫兹的实验证实。
然而,这样的理论还不能说明能产生象光这样高的频率的电振子的性质,也不能解释光的色散现象。到了1896年洛伦兹创立电子论,才解释了发光和物质吸收光的现象,也解释了光在物质中传播的各种特点,包括对色散现象的解释。在洛伦兹的理论中,以太乃是广袤无限的不动的媒质,其唯一特点是,在这种媒质中光振动具有一定的传播速度。
对于像炽热的黑体的辐射中能量按波长分布这样重要的问题,洛伦兹理论还不能给出令人满意的解释。并且,如果认为洛伦兹关于以太的概念是正确的话,则可将不动的以太选作参照系,使人们能区别出绝对运动。而事实上,1887年迈克耳逊用干涉仪测“以太风”,得到否定的结果,这表明到了洛伦兹电子论时期,人们对光的本性的认识仍然有不少片面性。
1900年,普朗克从物质的分子结构理论中借用不连续性的概念,提出了辐射的量子论。他认为各种频率的电磁波,包括光,只能以各自确定分量的能量从振子射出,这种能量微粒称为量子,光的量子称为光子。
量子论不仅很自然地解释了灼热体辐射能量按波长分布的规律,而且以全新的方式提出了光与物质相互作用的整个问题。量子论不但给光学,也给整个物理学提供了新的概念,所以通常把它的诞生视为近代物理学的起点。
1905年,爱因斯坦运用量子论解释了光电效应。他给光子作了十分明确的表示,特别指出光与物质相互作用时,光也是以光子为最小单位进行的。
1905年9月,德国《物理学年鉴》发表了爱因斯坦的“关于运动媒质的电动力学”一文。第一次提出了狭义相对论基本原理,文中指出,从伽利略和牛顿时代以来占统治地位的古典物理学,其应用范围只限于速度远远小于光速的情况,而他的新理论可解释与很大运动速度有关的过程的特征,根本放弃了以太的概念,圆满地解释了运动物体的光学现象。
这样,在20世纪初,一方面从光的干涉、衍射、偏振以及运动物体的光学现象确证了光是电磁波;而另一方面又从热辐射、光电效应、光压以及光的化学作用等无可怀疑地证明了光的量子性——微粒性。
1922年发现的康普顿效应,1928年发现的喇曼效应,以及当时已能从实验上获得的原子光谱的超精细结构,它们都表明光学的发展是与量子物理紧密相关的。光学的发展历史表明,现代物理学中的两个最重要的基础理论——量子力学和狭义相对论都是在关于光的研究中诞生和发展的。
此后,光学开始进入了一个新的时期,以致于成为现代物理学和现代科学技术前沿的重要组成部分。其中最重要的成就,就是发现了爱因斯坦于1916年预言过的原子和分子的受激辐射,并且创造了许多具体的产生受激辐射的技术。
爱因斯坦研究辐射时指出,在一定条件下,如果能使受激辐射继续去激发其他粒子,造成连锁反应,雪崩似地获得放大效果,最后就可得到单色性极强的辐射,即激光。1960年,梅曼用红宝石制成第一台可见光的激光器;同年制成氦氖激光器;1962年产生了半导体激光器;1963年产生了可调谐染料激光器。由于激光具有极好的单色性、高亮度和良好的方向性,所以自1958年发现以来,得到了迅速的发展和广泛应用,引起了科学技术的重大变化。
光学的另一个重要的分支是由成像光学、全息术和光学信息处理组成的。这一分支最早可追溯到1873年阿贝提出的显微镜成像理论,和1906年波特为之完成的实验验证;1935年泽尔尼克提出位相反衬观察法,并依此由蔡司工厂制成相衬显微镜,为此他获得了1953年诺贝尔物理学奖;1948年伽柏提出的现代全息照相术的前身——波阵面再现原理,为此,伽柏获得了1971年诺贝尔物理学奖。
自20世纪50年代以来,人们开始把数学、电子技术和通信理论与光学结合起来,给光学引入了频谱、空间滤波、载波、线性变换及相关运算等概念,更新了经典成像光学,形成了所谓“博里叶光学”。再加上由于激光所提供的相干光和由利思及阿帕特内克斯改进了的全息术,形成了一个新的学科领域——光学信息处理。光纤通信就是依据这方面理论的重要成就,它为信息传输和处理提供了崭新的技术。
在现代光学本身,由强激光产生的非线性光学现象正为越来越多的人们所注意。激光光谱学,包括激光喇曼光谱学、高分辨率光谱和皮秒超短脉冲,以及可调谐激光技术的出现,已使传统的光谱学发生了很大的变化,成为深入研究物质微观结构、运动规律及能量转换机制的重要手段。它为凝聚态物理学、分子生物学和化学的动态过程的研究提供了前所未有的技术。
光学的研究内容
我们通常把光学分成几何光学、物理光学和量子光学。
几何光学是从几个由实验得来的基本原理出发,来研究光的传播问题的学科。它利用光线的概念、折射、反射定律来描述光在各种媒质中传播的途径,它得出的结果通常总是波动光学在某些条件下的近似或极限。
物理光学是从光的波动性出发来研究光在传播过程中所发生的现象的学科,所以也称为波动光学。它可以比较方便的研究光的干涉、光的衍射、光的偏振,以及光在各向异性的媒质中传插时所表现出的现象。
波动光学的基础就是经典电动力学的麦克斯韦方程组。波动光学不详论介电常数和磁导率与物质结构的关系,而侧重于解释光波的表现规律。波动光学可以解释光在散射媒质和各向异性媒质中传播时现象,以及光在媒质界面附近的表现;也能解释色散现象和各种媒质中压力、温度、声场、电场和磁场对光的现象的影响。
量子光学
1900年普朗克在研究黑体辐射时,为了从理论上推导出得到的与实际相符甚好的经验公式,他大胆地提出了与经典概念迥然不同的假设,即“组成黑体的振子的能量不能连续变化,只能取一份份的分立值”。
1905年,爱因斯坦在研究光电效应时推广了普朗克的上述量子论,进而提出了光子的概念。他认为光能并不像电磁波理论所描述的那样分布在波阵面上,而是集中在所谓光子的微粒上。在光电效应中,当光子照射到金属表面时,一次为金属中的电子全部吸收,而无需电磁理论所预计的那种累积能量的时间,电子把这能量的一部分用于克服金属表面对它的吸力即作逸出功,余下的就变成电子离开金属表面后的动能。
这种从光子的性质出发,来研究光与物质相互作用的学科即为量子光学。它的基础主要是量子力学和量子电动力学。
光的这种既表现出波动性又具有粒子性的现象既为光的波粒二象性。后来的研究从理论和实验上无可争辩地证明了:非但光有这种两重性,世界的所有物质,包括电子、质子、中子和原子以及所有的宏观事物,也都有与其本身质量和速度相联系的波动的特性。
应用光学
光学是由许多与物理学紧密联系的分支学科组成;由于它有广泛的应用,所以还有一系列应用背景较强的分支学科也属于光学范围。例如,有关电磁辐射的物理量的测量的光度学、辐射度学;以正常平均人眼为接收器,来研究电磁辐射所引起的彩色视觉,及其心理物理量的测量的色度学;以及众多的技术光学:光学系统设计及光学仪器理论,光学制造和光学测试,干涉量度学、薄膜光学、纤维光学和集成光学等;还有与其他学科交叉的分支,如天文光学、海洋光学、遥感光学、大气光学、生理光学及兵器光学等。

参考资料:

光源是一个物理学名词,宇宙间的物体有的是发光的,有的是不发光的,我们把自己能发光且正在发光的物体叫做光源。太阳、打开的电灯、燃烧着的蜡烛等都是光源。

1、照明光源

照明光源是以照明为目的,辐射出主要为人眼视觉的可见光谱(波长380~780nm)的电光源。其规格品种繁多,功率从0.1W到20kW,产量占电光源总产量的95%以上。

2、辐射光源

辐射光源是不以照明为目的,能辐射大量紫外光谱(1~380nm)和红外光谱(780~1×106nm)的电光源,它包括紫外光源、红外光源和非照明用的可见光源。

以上两大类光源均为非相干光源。此外还有一类相干光源,它通过激发态粒子在受激辐射作用下发光,输出光波波长从短波紫外直到远红外,这种光源称为激光光源。

3、稳定光源

光纤通信技术中,进行光纤衰耗的测量,连接损耗的测量、活动连接器损耗以及光电器件或光收端机灵敏度的测量,光源是不可缺少的信号源。

4、背光源

光源模组中最核心技术为导光板的光学技术,主要有印刷形和射出成型形二种导光板形式,其它如射出成型加印刷,激光打点,腐蚀等占很少比例,不适合批量生产原则。

印刷形因为其成本低在过去较长时间内成为主流技术,但合格品不高一直是其主要缺点,而LCD产品要求更精密的导光板结构,射出成型形导光板必然成为背光源发展主流,但相应的模具技术难题只有少数大厂能够克服。伟志公司导光板的光学技术主要采用印刷形和射出成型形二种导光板形式。

扩展资料:

光源常见设备

1、白炽灯

白炽灯又称钨丝灯、灯泡,是将灯丝通电加热到白炽状态,利用热辐射发出可见光的电光源。由电流通过灯丝加热至白炽状态产生光的一种光源。是最早出现的电灯,用耐热玻璃制成泡壳,内装钨丝。

泡壳内抽去空气,以免灯丝氧化,或再充入惰性气体(如氩),减少钨丝受热蒸发。因灯丝所耗电能仅一小部分转为可见光,故发光效率低,一般为10~15流/瓦。但制造方便,成本低。

2、低压钠灯

是利用低压钠蒸气放电发光的电光源,在它的玻璃外壳内涂以红外线反射膜,是光衰较小和发光效率最高的电光源。低压钠灯发出的是单色黄光,用于对光色没有要求的场所。

3、高压钠灯

当灯泡启动后,电弧管两端电极之间产生电弧,由于电弧的高温作用使管内的液钠汞气受热蒸发成为汞蒸气和钠蒸气,阴极发射的电子在向阳极运动过程中,撞击放电物质的原子。

使其获得能量产生电离或激发,然后由激发态回复到基态;或由电离态变为激发态,再回到基态无限循环,此时,多余的能量以光辐射的形式释放,便产生了光。

参考资料来源:百度百科—光源


  光源是指正在发光的物体,而“正在”这个条件必须具备。物理学上指能发出一定波长范围的电磁波的物体。凡物体本身能发光者,称做光源,又称发光体,如太阳、恒星、灯以及燃烧着的物质等都是。但像月亮表面、桌面等依靠它们反射外来光才能使人们看到它们,这样的反射物体不能称为光源。在我们的日常生活中离不开可见光的光源,可见光以及不可见光的光源还被广泛地应用到工农业,医学和国防现代化等方面。
  1)热效产生:通过热效应产生的光,太阳光就是很好的例子,此外蜡烛等物品也都一样,此类光随着温度的变化会改变颜色。
  2)原子发光:荧光灯灯管内壁涂抹的荧光物质被电磁波能量激发而产生光,此外霓虹灯的原理也是一样。不同原子发光产生的光线具有相应的基本色彩,所以进行彩色拍摄时我们需要进行相应的补正。
  3)synchrotron发光:发光过程中同时携带有强大的能量,原子炉发的光就是这种。synchrotron发光是指媒质中的光速比真空中的光速小,粒子在媒质中的传播速度可能超过媒质中的光速,这不是真正意义上的超光速,这种现象被称为切伦科夫效应。


光源类型主要有三种:冷阴极荧光灯、RGB三色发光二极管(即LED),而少部分扫描仪采用了卤素灯光源。
背光源的分类:背光源目前按光源类型主要有EL、CCFL及LED三种背光源类型,依光源分布位置不同则分为侧光式和直下式(底背光式)。以下是它们的简单介绍。
1、边光式。即将线形或点状光源设置在经过特殊设计的导光板的侧边做成的背光源。根据实际使用的需要,又可做成双边式,甚至三边式。边光式背光一般可做的很薄,但光源的光利用率较小,且越薄利用率越小,最大约50%.其技术核心是导光板的设计和制作。边光式最常用的有LED灯背光和CCFL背光。伟志LED边光式背光源有WU、WH、WN类为单边式,WL、WJ、WK、WB类为双边式。随着LCD模组不断向更亮、更轻、更薄方向发展,侧光式CCFL式背光源成为目前背光源发展的主流。WQ类产品为伟志CCFL边光式背光源。
1)、LED灯背光。LED灯又称发光二极管,比起其它光源,单个LED灯的功耗是最小的。从蓝到红,LED灯有很多种颜色,常用的如”表一“和”表二“;另外还有一种特殊的颜色是白色,”表三“给出了其常用的色度范围。在各种颜色里,可大致分为高亮和低亮的两种:基本上,
”表一“里是属于低亮的(虽然琥珀色、橙色和红色里也有稍高亮的),”表二“
和”表三“里是属于高亮的。由于白色是混合色,无可标识的波长值,因此,以其在色度图上的坐标值来表示。
们自定义为”冷白色“和”暖白色“两种。在各种颜色里,都存在颜色偏差的问题,其中蓝色和白色表现的较为明显,尤其是白色,现在LED的供应商也无法对其进行有效的控制。
2)、CCFL背光。此种背光的最大优点是亮度高,所以面积较大的黑白负相、蓝模负相和彩色液晶显示器件基本上都采用它。理论上,它可以根据三基色的配色原理做出各种颜色。其缺点是功耗较大,还需逆变电路驱动,而且工作温度较窄,为0~60度之间,而LED等其它的背光源都可达到-20~70之间。
2、底背光式。是一个有一定结构的平板式的面光源,可以是一个连续均匀的面光源,如EL或平板荧光灯;也可以是一个由较多的点光源构成,如点阵LED或白炽灯背光源等。常用的是LED点阵和EL背光。
1)
EL背光。即电致发光,是靠荧光粉在交变电场激发下的本征发光而发光的冷光源。其最大的优点是薄,可以做到0.2~0.6mm的厚度。缺点是亮度低,寿命短(一般为3000~5000小时),需逆变驱动,还会受电路的干扰而出现闪烁、噪声等不良。EL的驱动有逆变器、Driver
IC驱动两种。因为目前Driver
IC的频率和负载输出电压达不到EL的典型条件(400Hz、AC100V),所以亮度较逆变器驱动更为低。最近也陆续有白光(全色)EL和LCD背光源出来。但由于亮度较暗其基本上用于4英寸以下小尺寸液晶显示。如:手机、PDA、游戏机等。全色(白光)、大尺寸亮度背光源,现在主流仍然是用CCFL做光源。伟志目前没有开发EL背光源。
2)LED底背光。优点是亮度好,均匀性好。缺点是厚度较大(大于4.0mm),使用的LED数量较多,发热现象明显。一般采用低亮的颜色进行设计,而高亮的颜色由于成本高基本上不考虑。WA类产品为伟志底背光源。


照明光源类型有哪些?按照光源划分,平时生活中比较常见的有四种灯:白炽灯、节能灯、金属卤素灯、LED灯(发光二极管)。这些灯在使用上各有利弊,充分了解各种灯的性能非常必要。下面就和小编一起来看照明光源的种类。
【照明光源】照明光源类型有哪些 照明光源种类及特点
按照光源划分,平时生活中比较常见的有四种灯:白炽灯、节能灯、金属卤素灯、LED灯(发光二极管)。这些灯在使用上各有利弊,充分了解各种灯的性能非常必要。
白炽灯
白炽灯最大的缺点就是寿命短,使用时间一般在3000至4000小时之间,有些质量差的白炽灯只能使用1500小时。家居中白炽灯常常在餐厅、卧室等空间使用,看上去颜色比较舒服。
优点:光源小、具有种类极多的灯罩形式;通用性大,彩色品种多、具有定向、散射、漫射等多种形式;能用于加强物体立体感、白炽灯的色光最接近于太阳光色。
缺点:不环保,使用白炽灯的时候有95%的电能都耗费在了加热上,只有5%的电能才是真正转换成能见的光;发热温度高,热蒸发快、寿命较短(1000小时)、红外线成份高、易受震动影响、色温低,带黄色。
适用范围:家居餐厅、卧室
金属卤素灯(卤钨灯)
金属卤素灯其实是白炽灯的一种,寿命一般在3000至4000小时之间,不会超过6000小时。这种灯可用于重点照明,比如为了凸显墙上的装饰画,室内的摆件等,可以用冷光灯杯进行照射,灯的白光可以根据不同的家装风格进行变化,与时尚保持一致。
优点:简单、成本低廉、亮度容易调整和控制、显色性好。
缺点:使用寿命短、发光效率低,灯丝在长时间高温下易发生熔断,故障率偏高。
适用范围:汽车前灯后灯,以及家庭,办公室,写字楼等
荧光灯
优点:节能,荧光灯所消耗的电能约60%可以转换为紫外光,其他的能量则转换为热能。一般紫外光转换为可见光的效率约为40%。因此日光灯的效率约为60%×40%=24%——大约为相同功率钨丝电灯的两倍。
缺点:会产生光衰,荧光灯显色性比不上白炽灯;灯光有闪烁现象,对视力有一定影响;此外,生产过程中和使用废弃后有汞污染。
适用范围:工厂、办公室、学校、超市、医院、仓库等室内公共空间。
节能灯
节能灯因节能而受欢迎,一个9瓦的节能灯相当于40瓦的白炽灯。节能灯的寿命也比较长,一般是8000至10000小时。正常使用节能灯一段时间后,灯就会变暗,主要因为荧光粉的损耗,技术上称为光衰。有些品质较高的节能灯发明了恒亮技术,可以让灯管长久保持最佳工作状态,使用2000小时后,光衰不到10%。
优点:光效高,是普通白炽灯的5倍多,节能效果明显;寿命长,是普通灯泡的8倍左右;且体积小,使用方便。
缺点:会产生光衰;显色性较低,白炽灯及卤素灯演色性为100,表现完美;节能灯显色性大多在80至90之间,低显色的光源不但看东西颜色不漂亮,也对健康及视力有害。
适用范围:交通照明、室内照明、景观照明
LED灯
这种灯学名叫发光二极管,属于新技术。现在市面上的白光LED灯在性能上比较好,但是目前的LED灯在技术上仍需要完善。
优点:LED灯具有体积小、耗电低、寿命长、无毒环保等诸多优点,最初是应用于室外装饰,工程照明,现在逐渐发展到家用照明。
缺点:价格贵,需要恒流驱动,散热处理不好容易光衰。光效比较低,颜色会有缺失,在赤、橙、黄、绿、青、蓝、紫7种波段中LED灯的蓝、绿波段比较少,因此在显示事物颜色时就会有缺失。
适用范围:交通照明、室内照明、景观照明

主要有以下几种:

1.模拟蓝天日光——D65光源 色温:6500K

2.模拟北方平均太阳光——D75光源 色温:7500K

3.模拟太阳光——D50光源 色温:5000K

4.模拟欧洲商店灯光——TL84光源 色温:4000K

5.模拟美国商店灯光——CWF光源 色温:4100K

6.模拟另一种美国商店灯光——U30光源 色温:3000K

7.模拟指定的商店灯光——U35光源 色温:3500K

8.模拟家庭酒店暖色灯光——F灯 色温:2700K

9.模拟展示厅射灯——Inca灯 色温:2856K

10.模拟水平日光——Horizon 色温:2300K

标准光源简介:

标准光源是指模拟各种环境光线下的人造光源,让生产工厂或实验室非现场也能获得与这些特定环境下的光源基本一致的照明效果。标准光源通常安装在标准光源箱内,主要用于检测物品的颜色偏差。

目前背光源主要分为2类:

1、灯管类(CCFL、HFL)

2、二极管类(LED、OLED)

按照光源放置位置又分为:侧光式及直下式侧光式优缺点可做很薄但光利用率低直下式优缺点是占用空间大光利用率高。

液晶显示采用的是被动发光的技术原理,因此液晶需要背光系统来提供光源。目前液晶电视采用的背光源主要分为CCFL(冷阴极荧光)、LED(发光二极管)和HCFL(热阴极荧光)三种。

扩展资料:

背光源主要由光源、导光板、光学用模片、结构件组成:

光源:主要有EL、 CCFL及LED三种背光源类型;

导光板:分为印刷、化学蚀刻(Etching)、精密机械刻画法(V-cut)、光微影(Stamper)、内部扩散、热压;

光学用模片:增光膜/片、扩散膜/片、反射片、黑/白胶;

结构件:结构件中有:背板(铁背板、铝背板、塑胶背板)、胶框、灯管架、铝型材、铝基条,其中背板和胶框为必用件,其它的结构件并非完全使用

参考资料来源:百度百科-背光源

本文地址:[https://chuanchengzhongyi.com/kepu/a6e52af7bb5491d9.html]
星座运势射手座今日(射手座明日运势星座屋)
上一篇 2024-05-07
周一至周五旅游免门票(周一至周五免门票的景区)
下一篇
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件举报,一经查实,本站将立刻删除。

相关推荐